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The thermohaline Rayleigh-Jeffreys problem 
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(Received 28 December 1966) 

The onset of convection induced by thermal and solute concentration gradients, 
in a horizontal layer of a viscous fluid, is studied by means of linear stability 
analysis. A Fourier series method is used to obtain the eigenvalue equation, which 
involves a thermal Rayleigh number R and an analogous solute Rayleigh number 
S ,  for a general set of boundary conditions. Numerical solutions are obtained for 
selected cases. Both oscillatory and monotonic instability are considered, but 
only the latter is treated in detail. The former can occur when a strongly stabilizing 
solvent gradient is opposed by a destablizing thermal gradient. When the same 
boundary equations are required to be satisfied by the temperature and concen- 
tration perturbations, the monotonic stability boundary curve in the (R, S)-  
plane is a straight line. Otherwise this curve is concave towards the origin. For 
certain combinations of boundary conditions the critical value of R does not 
depend on S (for some range of S )  or vice versa. This situation pertains when the 
critical horizontal wave-number is zero. 

A general discussion of the possibility and significance of convection at ‘zero ’ 
wave-number (single convection cell) is presented in an appendix. 

1. Introduction 
The problem of the onset of convection induced by buoyancy effects due to  

vertical thermal gradients, in a horizontal layer of a viscous fluid, was first 
analysed by Rayleigh (1916) and Jef€reys (1926, 1928). Because of the historical 
importance of the experiments of BBnard (1900,1901), this problem is sometimes 
referred to as the BBnard problem. It is now known (see, for example, Pearson 
(1958) or a review by Nield (1965)) that surface tension effects, and not buoyancy 
effects, were dominant in BBnard’s experiments. 

Buoyancy forces can arise not only from density differences due to variations 
in temperature but also from those due to variations in solute concentration. In  
problems of interest the solute is commonly, but not necessarily, a salt. Such 
problems arise in oceanography, limnology and engineering. Examples of parti- 
cular interest are provided by some Antarctic lakes (Shirtcliffe 1964; Hoare 1966) 
and ponds built to trap solar heat (Tabor & Matz 1965). 

When the density of a stratified layer of a single-component fluid decreases 
upwards, the configuration is stable. This is not necessarily so for a fluid consisting 
of two or more components which can diffuse relative to each other. The reason 
lies in the fact that the diffusivity of heat is usually much greater than the 
diffusivity of a solute. A displaced particle of fluid thus loses any excess heat more 
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rapidly than any excess solute. The resulting buoyancy force may tend to increase 
the displacement of the particle from its original position, and thus cause 
instability. The same effect may also cause overstability (involving oscillatory 
motions of increasing amplitude). We can see this by considering a fluid whose 
density decreases with increase of temperature and increases with concentration 
of dissolved salt. Suppose that the gradients of temperature and concentration 
each decrease upwards. A particle of fluid displaced upwards is initially warmer 
and saltier than its surroundings. Its temperature rapidly declines to that of its 
surroundings, but its salt concentration declines slowly. Because of the excess 
salt content, it  may become more dense than its surroundings. The buoyancy 
force then acts to restore it to its original position. On arrival there it still has 
most of its original salt content, but because it has spent some time in a cooler 
region it may still be more dense than its surroundings. The buoyancy force then 
causes the particle to overshoot its original position. Oscillations of increasing 
amplitude therefore result. 

A study of the onset of convection in a layer of sugar solution, with a stabilizing 
concentration gradient, when the layer is heated from below, has been made by 
Shirtcliffe (1967). He has found that the first stage of the development of con- 
vection layers similar to those described by Turner & Stommel (1964) is the 
appearance in a thin bottom layer of a cellular oscillatory motion which initially 
has a very definite period. 

Vertgeim (1955) gave a theoretical treatment of the onset of monotonic 
thermohaline convection in a vertical cylinder, while both monotonic and 
oscillatory convection were considered by Gershuni & Zhukhovitskii (1963) for 
fluid between two parallel vertical plates. For a horizontal layer of fluid, Stern 
(1960) discussed monotonic instability, and Lieber & Rintel (1963) considered 
the possibility of overstability. The boundary conditions treated in each of these 
papers have been the mathematically convenient ones only. Thus for a horizontal 
layer both top and bottom boundaries were assumed to be free, with the tem- 
perature and concentration there kept fixed. (We shall refer to  these as ‘ideal’ 
boundaries.) Although Walin (1964) ignored the boundary conditions in his 
treatment of an unbounded fluid, his analysis implicitly depends on the assump- 
tion of ideal boundaries since he considered disturbances involving one Fourier 
component only. Thus his results are appropriate to a horizontal layer, of very 
large depth, between ideal boundaries. Similar results were obtained by 
Weinberger (1962, 1964). In  the present paper more-realistic boundaries (at 
least one rigid) are considered, and general conditions for the temperature and 
concentration are applied. We shall find that although the thermal and solute 
effects are perfectly coupled for the case of ideal boundaries, this is not always so 
for other cases. 

The present study is confined to infinitesimal disturbances. When the solute 
gradient is stabilizing, Veronis (1965) and Sani (1965) have found that finite- 
amplitude subcritical instability (convection at a thermal Rayleigh number less 
than that given by the linear theory) is possible. The apparent reason for this is 
that non-linear terms in the governing equations may lead to a substantial 
distortion of the previously linear solute profile, so that the solute gradient in the 
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bulk of the fluid is reduced. The distortion of the thermal profile is less because 
of the relatively high thermal diffusivity. Away from the horizontal boundaries 
this destablizing thermal gradient may then become dominant so that convection 
thus ensues. If the basic solute gradient is destablizing then any finite distortion 
tends to reduce its destablizing effect. An infinitesimal disturbance should then 
be the most unstable one, and the theory below therefore applicable. 

The requisite perturbation analysis is given in $2. Since the full solution for 
the case of ideal boundary conditions has not yet appeared in the general 
literature, it  is included here in $3 .  In  $ 4 the Fourier series method is used to 
obtain the eigenvalue equation for general boundary conditions. Solutions of this 
equation are presented and discussed in $ 5 .  Consideration is required of the 
situation when the critical horizontal wave-number is zero. This situation is 
discussedin detail in the appendix. Among the features of interest is the ease with 
which the critical Rayleigh number may then be found. 

2. Perturbation analysis 
The Boussinesq approximation for a quasi-incompressible fluid enables one, 

following Chandrasekar (1961)andYih (1965), towritethegoverningequationsas 

v.u = 0, (2.1) 
au P 1 -+ (u. V )  u = - -gk- - V P +  vV'U, 

Po Po at 

a q a t  + U. VT = K V ~ T ,  

aclat + u . vc = KVC,  

P = p0[ 1 - a( T - To) - a'( C - C,)] . 
Cartesian co-ordinates have been taken with the origin in the lower boundary 
and the z-axis vertically upwards (so that the fluid lies between the planes z = 0 
and z = d). The dependent variables are the velocity u = (u, w, w), density p, 
pressure P, temperature T and solute mass concentration C. The gravitational 
acceleration is denoted by g, and a unit vector in the z-direction by k. The 
kinematic viscosity v, the thermal diffusivity K and the solute diffusivity K' are 
each assumed to be constant. Equations (2.1)-(2.4) express the conservation of 
total mass, momentum, heat and solute. The equation of state (2.5) involves a 
thermal coefficient of expansion a and an analogous solvent coefficient a'. The 
suffix zero refers to values at the reference level z = 0. 

We suppose that the temperature and concentration at the lower and upper 
boundary have the uniform values To, Co and TI, C, respectively. The steady state 

where B = (To - T J / d  and p' = (C, - CJ/d are the magnitudes of the uniform 
temperature and concentration gradients (positive if the quantities decrease 
upwards). 

We now consider a perturbation on the steady state solution, and write 

T = T%+B, C = C,+y, P = P&+p. 
35-2 
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Then equations (2.1)-(2.4) give, to fht order, 

aolat = pw + K v ~ I ~ ,  

aylat = p'w + K T Y .  

(alat) p 2 W )  = gv;(ae + aiy)  + n p w ,  

(2.8) 

(2.9) 

(2.10) 

We obtain, by manipulating (2.6) and (2.7), 

where V ;  = a y a X 2  + a2/ay2 and v2 = v; + a2Iaz2.  

The horizontal boundaries may be either rigid or free. For a rigid boundary 
the no-slip condition and the equation of continuity lead to the conditions 
w = awjaz = 0. At a plane boundary where the tangential stress is zero the 
corresponding conditions are w = a2w/az2 = 0. There is no argument about the 
conditions appropriate to a rigid boundary, but Yih (1965) has pointed out that 
the above conditions (which have been used by many previous authors) for a free 
boundary are not strictly correct if deformation of the boundary is considered. 
The full conditions are considerably more involved. At present, when there is a 
paucity of experimental results, the effort required to treat the full conditions 
does not appear to be justified, and we shall adopt the simplified conditions. No 
error is involved for monotonic instability, and for oscillatory instability the 
approximation is acceptable provided the fluid layer is not too thin. 

If the temperature at a boundary is kept fixed, then there 19 = 0. On the other 
hand, if the heat flux across the boundary is kept fixed (and the perturbation 
heat flux is thus zero) then ae/az = 0 at the boundary. More generally, we may 
apply a 'radiation' type condition, aO/az+ LO = 0, where the sign of the para- 
meter L must be chosen to ensure that the perturbation heat transfer is out of the 
fluid layer. We impose on y a similar condition, aylaz + M y  = 0. If the boundary 
is impermeable then M = 0, while if the concentration is kept constant (for 
example, at  its saturated value) then M = co gives the appropriate condition. 

Thus our boundary conditions will be 

w = O ,  aw --K,d-=O, a2w d-- -L ,O=O,  ae d--MM,y=O, aY at x = O ,  (2.11) 
ax ax2 az ax 

w = O ,  aw -+K,d,=O, a2w d--+L,€J=O, ae d-+M,y=O, aY at z = d ,  (2.12) 
az az az az 

where the suffices I ,  urefer to the lower and upper boundaries respectively, and for 
convenience we have introduced a parameter K which takes the discrete values 0 
(for a rigid boundary) and co (for a free boundary). 

We now make a normal mode expansion and introduce non-dimensional 
variables. We let 

[e, y ,  WI = [@(z),  J%), W ( 4 l  exp {at + i(lc, x + k, y)}. (2.13) 

Here CT is a time constant (a complex number in general) and the horizontal wave- 
number is given by k = J(k;+k;).  We take d i n  as unit of length and write 
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11 = d/dz with z now expressed in terms of this new unit. We also let W, = Wdln-v, 
0, = @n-K/Pdv, rl = Fn-Kf//3'dv and a, = ad2/7r2v. Equations (2.8) (2.9) and (2.10) 
then give (D2 - b2 - ra,) 0, = - W,, (2.14) 

(0'- b2 - sa1) I?, = - W,, (2.15) 
and (2.16) 

where n4R = a p g d 4 / ~ v  is the thermal Rayleigh number and n4X = cCf /3 'gd4/KfV is 
the analogous solute Rayleigh number, while r = v / K  is the Prandtl number and 
s = V / K '  is the Schmidt number. 

W, = 0, [D-nK,D2]W1 = 0, [D-L,/n-]@, = 0, [ D - i l / f ~ ] r ,  = 0, at z = 0, 
(2.17) 

and 

W, = 0, [D+n-K,D2]W1 = 0, [ D + L u / ~ ] O ,  = 0, [D+M,/n-]r, = 0, a t  X =  n-. 
(2.18) 

The differential equations (2.14), (2.15), (2.16) and the boundary conditions 

( 0 2  - b2) (D2 - b2 - a,) W, = Rb20,  + Sb2F,, 

The boundary conditions (2.11) and (2.12) now become 

(2.17), (2.18), form an eigenvalue system of the eighth order. 

3. Solution for 'ideal ' boundary conditions 

fixed concentration, the boundary conditions are 
For the case when both boundaries are free, at  fixed temperature and with 

W, = D2Wl = 0, = I?, = 0 at  z = 0 and z = n-. 

[W,,0,, r,] = [ 1 , ( n 2 + b 2 + r ~ l ) - 1 ,  (n2+b2+sa1)-1]sinnz, 

These conditions, and the differential equations (2.14)-(2.16), are satisfied by 

if (n2 + b2) (n2 + b2 + c ~ ~ )  (a2 + b2 + rc~,) (n2 + b2 + sc,) 
= Rb2(n2 + b2 + sal) + Sb2(n2 + b2 + ra,). (3.1) 

At neutral stability the real part of the time-constant CT, is zero. We thus put 
g1 = iw,  where w is real. The real and imaginary parts of this equation then give 

(n2 + b2) {(n2 + b2)3 - ( R  + S )  b2 - w2(rs + r + s )  (n2 + b2)} = 0, 
o((r  + s + 1) (n2 + b2)3 - ( s R  + rS) b3 - w2rs(n2 + b2)) = 0. 

R + X = (a2 + b2)3/b2, 

(3.2) 
(3.3) 
(3.4) If w = 0, then 

while if w $. 0, then 

rs(n2 + b2) o2 = (r + s + 1) (n2 + b2)3 - ( s R  + rS) b2, 

and 
s2R r2S - (n2 + b2)3 + 

(r+s) ($+I )  ( r+s)  ( r +  1) - b2 

For various integers n the quantity (n2 + b2)3/b2 is least when n = 1. The minimum 
value as b varies is then %?, which is attained when b2 = 4. Hence the neutral 
stability loci in the (R, #)-plane are the straight lines 

and 
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The first line corresponds to monotonic or stationary instability and the second to 
oscillatory instability or overstability (provided that w ,  as given by equation ( 3 3 ,  
is real, i.e. (sB+ rS)/(r  + s + 1 )  < >$.) 

If r = s (that is K = K ' )  these lines are parallel. The second is further from the 
oyigin, and the condition for stability is R + X < 7. Overstability is then ruled 
out. Except for this exceptional case, the lines intersect at the point 

R = 6 * 7 5 ( s + l ) / ( s - r ) ,  S = 6 * 7 5 ( r + l ) / ( r - s ) .  

A t  this point the overstability curve bifurcates from the monotonic instability 
carve. Except for the linear magnification factor >g, the stability diagram is 
&milar to that given by Gershuni & Zhukhovitskii (1963) for a fluid between 
parallel vertical walls. The author's (19663) thesis contains the results of a 
detailed examination, in the manner of Weiss (1964),  of the nature of the roots 
of the equation (3 .1)  in gl. These results confirm that if 

R+X < and s2(s+ 1 ) - l R + r 2 ( r +  l ) - l X  < >$(r+s) 

then convection does not occur. When R and X are varied so that the first 
inequality (but not the second) is reversed then monotonic convection results, 
but if the second inequality only is reversed then oscillatory convection results. 
It is noteworthy that a negative density gradient (sR+rS < 0 )  is not a suf- 
ficient condition €or stability for either monotonic disturbances or oscillatory 
disturbances. 

4. Solution for general boundary conditions 
We now return to the general case where the boundary conditions are given by 

(2.17) and (2.18).  The Fourier series method presented by Nield (1964) is very 
convenient for the present problem. The method involves expanding each 
dependent variable in two ways: first, as a Fourier series which can be dif- 
ferentiated the required number of times and, secondly, in an equivalent form 
suitable for imposing the boundary conditions. The second form is the sum of a 
simple polynomial and a Fourier series. 

We denote the constants to be eliminated by 

A, = D ~ o ) ,  A, = P W , ( ~ ) ,  A, = q o ) ,  A,  = A, = q o ) ,  = rl(n), 
and let 

W, = C{a, - ( 2 1 ~ ~ ~ 3 )  [A, - ( - 1)" A,]) sin nx ( 4 . l a )  

= Ca,&nnz- (1 /6n)  [A,x(z -n)  ( ~ - 2 n ) - A , x ( x ~ - n ~ ) ] .  ( 4 . l b )  

(In these sums, and those following, n runs from 1 to 00.) Then, since W, vanishes 
at z = 0 and x = n, from the boundary conditions (2.17) and (2.18),  

OW, = %a, cos nz - (6n)-l [A,(3z2 - 6nz + 2n2) - A,( 3x2 - n2)], 

P W ,  = C{ - nza, + (2 /nn)  [A, - ( - l )"A , ] }  sin n z  

(4.2) 

(4 .3a)  

(4 .3b)  = X{ - n2a,) sin nz - 7~-1 [A,(x - n) - A, 21, 

D4W1 = Xn4a, sin nz. (4.4) 
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We also let 0, = Z{bn + (Z/nn) [A3 - ( - 1)" A,]) sin nz  

DO, = Xnb, cos nz - n-l[A, - A,], 
P O ,  = X( - n2b,) sin nz. 

(4.5a) 

= Xb,sinnz-n-l[A,(z-n)-A,z], (4.5 b) 

(4.6) 

(4.7) 

so that 

Finally, I?, and its derivatives are given by similar expressions with c,, A,, 4 
replacing b,, A,, A,. 

The remaining boundary conditions require that 

Ennu, = ( in2 + K J  A, + Qn2A,, ( 4 4  

I;(-l)Wnna, = -&r2Al-(+r2+Ku)A2, (4.9) 
Cnnb, = ( 1  + 4) A, -A,, 

I;( - l)"nnb, = A,- ( 1  + Lu)A,, 

Xnnc, = ( 1  +ME) A, -A,, 

.C( - l )nnnc,  = A, - ( 1  +Mu) A,. 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

The differential equations (2.14)-(2.16) are satisfied by substituting the complete 
Fourier expansions for W,, O,, I?, and their derivatives of even order, and equating 
the coefficients of sin nz. We thus obtain, with (n2 + b2) denoted by F ,  
F ( F  + a,) a, - Rb2b, - Sb%, 

= (2/;rm)([2b2+al+n-2(b4+alb2)] [A,- ( -  l)nA,] 

+ Rb2[A, - ( - 1)"A4] + Sb2[A5 - ( - 1)nA8]), 

- a, + ( F  + ra,) b, = (2lnn)  {n-,[A, - ( - l ) ,  A,] + (b2 + ra,) [A, - ( - 1)" A,]}, 
- a, + ( F  + sa,) c, = (2/n-n) (n-2[A, - ( - 1)" A,] + (b2 + sa,) [A, - ( - l), A&. 

From these equations a,, b,, c, can be expressed in terms of A,, . . . , A,. Substitution 
in (4.8)-(4.13) then yields six equations in A,, ..., A,. Elimination of these con- 
stants gives the eigenvalue equation. 

For the general case this equation involves a lengthy expression. We are 
concerned mainly with the onset of steady convection, for which a, = 0. When 
we write f = ;rrb cothnb, 

2, = X2n2F2/G, 

2, = Z2n2b2/G, 

X5 = I;2n2b2F/G, 

g = nb cosechnb, 
F = n2 + b2, G = F(F3-Rb2-Xb2),  

I;, = X( - 1)"2n2P/G,  

I;, = X( - 1)n2n2b2/G, 

I;6 = X( - 1)n2n2b2F/G, 

where the sums are all from n = 1 to n = m, the eigenvalue equation for this 

= 0. 

(4.14) 
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and &+Kz X2 (R + 8) & (R+ S ,  & 
Z2 &+K, (R+S)& (R  + S )  ZLi 

&/b2 XJb2 ( R + t J ) X 3 - , f - &  (R+S)X:,-g 
&/b2 x:5/b2 (R + S) x4 - g ( R  + S )  X 3  - f - L, 

5. Results and discussion 
In general the eigenvalue equation (4.14) must be solved numerically. If 

desired, the speed of convergence of each series may be increased in the usual 
way. B’or some boundary conditions, however, known results make a numerid 
calculation unnecessary. If L, = L, and MJ = & then the determinant in (4.14) 
reduces to the product of the determinants 

(This follows when rows 3 and 4 are subtracted from rows 5 and 6 respectively, 
columns 3 and 4 are added to columns 5 and 6 respectively, and a Laplace 
expansion is made according t o  the second-order minors of the last two rows.) 
It is evident that, in this case, R and S enter the eigenvalue equation in the 
combination (R  + S) only. The problem then reduces to the usual thermal case 
with R replaced by (R  + S).  Thus when the temperature perturbation 0 and the 
concentration perturbation y satisfy formally identical boundary conditions, 
the stability boundary curve in the (R, S)-plane is the straight line 

R+S = R,(=S,), 

where R, is the critical value of R when S = 0, and S, is that of S when R = 0. 
The critical wave-number b, is the same for all (R,S) combinations. The flow 
pattern in cells induced by thermal effects is identical with that in cells induced 
by solute effects, or by a combination of these. 

For convenience we have listed in table 1 critical values of the thermal Rayleigh 
number Re* = n4R, and the corresponding wave-number a, = nb, for various 
limiting values of K,, K,, L,and L,. The same table, with h’:, M, and Mu replacing 
R:, Ll and L, respectively, gives the critical solute Rayleigh number and the 
corresponding critical wave-number in the absence of the thermal effects. 

When the boundary conditions on 0 differ from those on y, the stability 
boundary is no longer a straight line but is concave towards the origin. This is 
because the flow pattern in cells induced by thermal effects alone is now different 
from that in cells induced by solute effects alone. Considerationsof energy balance 
require that RIR,+S/S, 2 1. The argument is identical to that given in the 
author’s papers on coupled surface-tension and buoyancy effects in this problem 
(Nield 1964, 1966a). 

This is well illustrated in figures 1 and 2, where the stability boundary in the 
(R, 8)-plane, and the critical wave-number corresponding to a point on this 
boundary, are plotted for two cases of possible practical interest. In each case 
the lower boundary is assumed to be rigid (Kl = 0) and the upper boundary to be 
free (K,  = co), and each is at  fixed temperature (15, = 00, L, = 00); also the 
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concentration gradient at the upper surface is in each case kept fixed (Mu = 0). 
In  case (a )  the concentration gradient a t  the lower boundary is kept fixed 
(Mi = 0), while in case ( b )  the concentration itself is kept fixed (M, = 00). Case (a)  
would be a good approximation to the conditions for a liquid layer bounded by 
metal below and air above. Case ( b )  would be applicable if additional undissolved 
solute present at the bottom kept the concentration there at  its saturated value. 

1000 

& 

1 500 
c 
6 .- 

$ 0  

8 
3 

h 

8 4 

9 
0 m 
3 

- 500 

Thermal Rayleigh number R* 
FIGURE 1. Stability diagram for infinitesimal monotonic disturbances. Stable states are 
represented by points below the appropriate boundary curve. The cases shown corre- 
spond to an upper surface which is free, conducting and impermeable, and a lower surface 
which is rigid, conducting and (a )  impermeable or ( b )  a t  fixed concentration. 

- 500 0 500 1000 1500 
Thermal Rayleigh number R* 

FIGURE 2. Critical wave-number corresponding to points on the neutral 
stability curves in figure 1. 
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The cut-off in case (a) is particularly interesting. For values of R* smaller than 
200.6 the critical value of S* is not affected by variation in R*. The thermal effect 
is then decoupled from the solute effect. The critical wave-number is zero. This 
means that then the layer does not split up into more than one convection cell, 

gz KlI Ll L, R,* a, Author 

00 co 03 co 657.511 2.22 Rayleigh (1916) 

i76} Present author 03 CCJ 0 03 384.693 
c o c o o o  120 
0 00 03 00 1100.657 2.68 Reid & Harris (1958) 

Sparrow, Goldstein & Jonsson 0 co 0 03 816.748 
o c o m o  669.001 ::::) (1964) 
o c o o o  320 0 
0 0 03 co 1707.765 3.12 Reid & Harris (1958) 

i5’} Sparrow, Goldstein & Jonsson (1964) 
0 0 0 co 1295.781 
0 0 0 0  720 

h’ = 0, rigid; K = 03, free; L = 0, constant heat flux; L = co, constant temperature. 

TABLE 1. Values of critical thermal Rayleigh number R,* (in absence of solute) and 
corresponding critical wave-number a,, for various boundary conditions. 

and that if the fluid is unbounded laterally, this single cell is of infinite extent 
In  practice the presence of lateral boundaries will impose a non-zero lower bound 
on the horizontal wave-number, and the minimum Rayleigh number (here the 
solute Rayleigh number) required to cause convection will be raised. A detailed 
discussion of the possibility of convection at zero wave-number is presented in an 
appendix. 

Although we have extended the stability diagram of figure 1 into the fourth 
quadrant, we must remember that in that quadrant there is the possibility not 
only of overstability with infinitesimal disturbances, but also of finite-amplitude 
instability of both monotonic and oscillatory types. (The corresponding stability 
boundary is dependent on the values of the Prandtl number and the Schmidt 
number for the fluid solution.) The criterion illustrated in figure 1 is thus a 
necessary, but in geneial not sufficient, condition for stability for states corre- 
sponding to points in the fourth quadrant, In  the remainder of the plane it is 
thought that the curves plotted are the physically-significant stability boundaries 
for the cases considered. 

A calculation of the stability criterion for infinitesimal oscillatory disturbances, 
for one set of non-ideal boundary conditions, has been reported in the author’s 
(1 966 b) thesis. However, for qualitative comparison with the skimpy experimental 
results so far available, the theory for ideal boundary conditions given in Q 3 should 
be adequate. It is noteworthy that in Shirtcliffe’s experiments the oscillatory 
convection appeared when the temperature gradient was of order of magnitude 
that predicted by the linear theory. The observed period of the oscillation was 
likewise in agreement with this theory. 

There remains the question of when the finite-amplitude stability criterion 
supercedes the criterion given by the linear theory. Veronis (1965) and Sani (1965) 
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both found that for S negative and small in magnitude, infinitesimal distur- 
bances are more unstable than finite-amplitude ones, so that our linear theory 
is useful in some range extending a small distance into the fourth quadrant of 
the (R, 8)-plane. The next desirable step appears to be the extension of the finite- 
amplitude theory to non-ideal boundary conditions. 

The author gratefully acknowledges the stimulus provided by Mr T.G.L. 
Shirtcliffe, and the helpful comments of Dr C. M. Segedin and Dr R. A. Wooding. 

Appendix Convection at zero critical wave-number 

In  a strict sense the situation b, = 0 is meaningless, since when b = 0 the equations 
(3.16)-(2.18) imply that W, is identically zero and there can be no motion. In  
practice, however, the presence of lateral boundaries will impose a non-zero 
lower bound on the horizontal wave-number, and it is sensible to consider the 
situation when b is small but finite. The left-hand side of the eigenvalue equation 
(4.14) may be expanded in powers of b. It is of the form 

A,+A2 b2 + A4b4+. . .. 
Thus as b -+ 0 the eigenvalue equationreduces to A,  = 0. Here A ,  does not contain 
R and S, but it is a function of Kl and K ,  (which in our problem may have the 
values 0 and co only) and of Lz, A,, Hz and Mu (which must all be non-negative). 
It is found that A, vanishes identically if L, = L, = 0 or M,  = Mu = 0, but not 
otherwise under the above restrictions. 

For the moment we shall concentrate on the thermal problem, when X = 0. 
Theinteresting case is then that whenL, = L, = 0, corresponding to the condition 
of constant heat flux at each boundary. The eigenvalue equation now reduces to 

A 2 + A 4 b 2 +  ... = 0, (A 1) 

where A, is found to be linear in R. Hence as b + 0, R can be explicitly expressed 
in terms of the remaining parameters. When b -+ 0, 

3c23 &/b2 -+ 256, &/b2 -+ 2c49 

' 2 2  + 272, x;4/b2 --f 2715, X6/b2  --f 274, 
m W 

where cs = C n+ and ys = X ( -  1)n--ln-S. 

Then, with the aid of the approximations (to order b2), 

n=l n=l 

n b  coth nb = 1 + +9b2 and n b  cosech n b  = 1 - pn2b2 

and of the known values 

c2 = n2/6, c4 = n4/90, c6 = n6/945, 

72 = n2/12, 74 = 7 ~ ~ 1 7 2 0 ,  76 = 31n6/30,240, 

one easily obtains the following values of the Rayleigh number R* = +R. 
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Case (a). Both boundaries rigid (K,  = 0, K ,  = 0). 

CUM (c). Both boundaries free (K ,  = 00, K,  = a). 

n6 a* = -~ = 120. 

The results for cases (a )  and (b)  confirm (to high accuracy !) the values 720.000 
and 320.000 listed without comment by Sparrow, Goldstein & Jonsson (1964). 
The result ( c )  has not appeared in the general literature, although doubtless it 
has been calculated previous1y.t (It corresponds to a case previously considered, 
but with the wrong form of the boundary conditions, by Jeffreys (1926). In  a 
later paper Jeffreys (1928) gave the corrected expressions for the boundary 
conditions but did not repeat his calculation.) 

We can check that the above values for R* are indeed critical Rayleigh 
numbers. Equation (A 1) can be written in the form 

' ( c 6 + 7 6 )  

R = ~,+pb2+0(b4) ,  (A 2) 

where the coefficient p depends on R. For the cases considered, p is positive when 
R has the value R,. Thus R has a minimum (as b varies) a t  b = 0. In  the author's 
experience the function R(b) defined by the eigenvalue equation (4.14) has, for 
the present simple problem, only one minimum. The critical Rayleigh number is 
therefore R, if the layer extends to infinity in the horizontal direction. However, 
as mentioned above, in practice the fluid will be bounded by lateral walls, and 
the single convection cell will be limited in size. The corresponding value of b will 
not be zero, and the minimum Rayleigh number will not be R, but will be the 
somewhat higher value corresponding to this wall-limited wave-number. 

In  order to see whether the disturbance associated with the small critical 
wave-number does grow with time, we require the eigenvalue equation with 
non-zero time-constant cr,. To the first order in the small quantities b2 and crl we 
obtain 

Rb2 = R,(b2 + rcrl). 
Thus for Rayleigh numbers near the critical value, crl --f 0 as b + 0 if the Prandtl 
number r is finite. At small but finite values of b, however, one can have crl 
positive (though small) for slightly supercritical Rayleigh numbers. Also the 
perturbation velocity amplitude W, is small but not zero. We conclude that the 
disturbance is then able to grow with time (though relatively slowly), and 
convection can therefore occur. 

1- [Note added in proof.] The value has been published since by Hurle, Jakeman & 
Pike (1967). 
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We shall now investigate why it is that, in the thermal problem, only when the 
heat flux is kept fixed at each boundary is a single cell the favoured form of 
convection. The stabilizing factors present are viscosity and thermal diffusivity. 
The latter tends to make uniform the temperature of the fluid, and thus reduces 
the buoyancy effect. When the total heat flow across each boundary is kept 
constant, the perturbation heat flow out of the fluid layer is zero. While surplus 
heat can still diffuse back into the body of the fluid, it cannot diffuse out across 
the boundary. A possible thermal stabilizing effect is thus absent. Viscosity is 
then the dominant stabilizing factor. The favoured configuration for convection is 
then that for which the viscous dissipation is least. This is a single cell. On the other 
hand, when perturbation heat flow across a boundary is allowed, a stabilizing 
effect is thereby introduced. (This, incidentally, increases the critical Rayleigh 
number.) The contribution of this thermal stabilizing effect decreases with 
increasing wave-number. The viscous stabilizing effect, however, becomes greater 
as the wave-number increases, for then more vortices are formed. It appears that 
the combined stabilizing effect is a minimum for a non-zero wave-number. This 
critical wave-number determines the horizontal scale of the favoured convection 
cells. 

For the thermohaline problem the coefficient p in (A 2) depends on both R 
and S. For sufficiently small values of 8, p(R,, S) is negative, but for large values 
of S it is positive. For the case Kl = 0, Ku = a, Ll = 0, Lu = 0, M = 00, Mu = co, 
one finds that the change of sign occurs when S has the value 2.060, i.e. when 
S* = 200.6. The critical wave-number is then zero provided that 8* is less than 
200.6. This is the value quoted in the discussion (in Q 5) of the analogous case in 
which the roles of the thermal and solute effects are reversed. 

As a final example we consider a thermal problem in which surface-tension 
effects, as well as buoyancy effects, are important (Nield 1964). The interesting 
case is that when the lower boundary is rigid and the upper free surface is 
subject to the surface-tension condition derived by Pearson (1958). One again 
finds that, on the Pearson-Nield model, convection at zero wave-number occurs 
if and only if the heat flux across each boundary is kept constant. For such 
conditions the neutral stability condition reduces to 

L2Cz(66 -k 76) - (6 -k %)'I Ri -k [(Cz - 7 2 )  (& -k %)I Bi = 2&dcz -k 'h), 
n4Rl/320 + n2Bl/48 = 1, or 

where 7r4R1 is the Rayleigh number and n2B, is the Marangoni number as defined 
in the author's 1964 paper for example. The surface-tension and the buoyancy 
effects are now perfectly coupled. 
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